a2 United States Patent

Douglas et al.

US009304796B1

US 9,304,796 B1
Apr. §5,2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(1)

(52)

(58)

IDENTIFICATION OF VIRTUAL
COMPUTING INSTANCE ISSUES

Applicant: Amazon Technologies, Inc., Reno, NV
(US)

Inventors: Jeffrey Andrew Douglas, Seattle, WA

(US); Heath David Petty, Maple Valley,

WA (US); Troy Dalton Emmerson,

Issaquah, WA (US)

Assignee: Amazon Technologies, Inc., Seattle, WA

(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 273 days.

Appl. No.: 14/040,189

Filed: Sep. 27, 2013

Int. CI.

GOGF 11/00 (2006.01)

GOGF 9/455 (2006.01)

GOGF 1120 (2006.01)

U.S. CL

CPC ... GO6F 9/45533 (2013.01); GOGF 11/2028
(2013.01)

Field of Classification Search

CPC oo GOG6F 9/45533

USPC i 714/4.1, 4.2, 4.3, 26, 48

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0192220 Al1* 7/2010 Heizmannetal. 726/19

2011/0197097 Al* 82011 Beatyetal. ... 714/27

2011/0214018 Al* 9/2011 Vidaletal. 714/25

2011/0320882 Al* 12/2011 Beatyetal. ... 714/45
OTHER PUBLICATIONS

Windows Error Reporting, www. http://en.wikipedia.org/wiki/Win-
dows_ Error_Reporting, as accessed Sep. 27, 2013, 3 pages,
Wikipedia, Wikimedia Foundation, Inc., San Francisco, California,
United States.

* cited by examiner

Primary Examiner — Dieu-Minh Le
(74) Attorney, Agent, or Firm — Thorpe North Western LLP

(57) ABSTRACT

Technology for identifying virtual computing instance issues
is described. An operating information report of a virtual
computing instance may be parsed to obtain a diagnostic
result. The diagnostic result may be compared against a data
store of known computing instance issues to determine
whether there is an issue for the virtual computing instance.
The issue may be flagged when identified and provided for
resolution.

22 Claims, 8 Drawing Sheets

Reccive an operating information report from
a virtual computing instance at a storage
servet, the operating information report being
created by a request from a user of the virtual
computing instance

410

T

Y

Parsc the opcrating information report to
obtain a diagnostic result

A

Compare the diagnostic result against an
issucs data storc containing known virtual
computing instance issues to determine
whether there is an existing issuc for the
virtual computing instance

430

A

[Flag the cxisting issuc when identificd

440

TR Y

Y

Compare a flagged existing potential issue
against a solutions data storc to identify a
cause of the flagged existing issue and a

solution to resolve the flagged potential issuc

450

=

U.S. Patent Apr. 5, 2016 Sheet 1 of 8 US 9,304,796 B1

Uscr Device Diagnostic
110 Technician Device
115

Atornet

\\1%’/
Object Storage Service

Virtual Computing Instance [Management 147
125 N Service —

Storage @
Report 145 Bucket

Generator 150 152
130

Resizable Compute Service

Virtualization Management [
Layer 135 I

Hardware Layer 140 i

| 7 _—
| 7

FIG. 1

U.S. Patent Apr. 5,2016 Sheet 2 of 8 US 9,304,796 B1
Object Storage Service 235
Storage J
—» @
: Bucket
| 27 232
|
|
|
|
|
|
|
Virtual Computing Instance Recovery Virtual Computing Instance

205

210

225

Report @ Report
Generator / \‘ Generator

230

Virtualization Management Layer 21

Hardware Layer 220

FIG. 2A

U.S. Patent Apr. 5, 2016 Sheet 3 of 8 US 9,304,796 B1

Distributed 1 P
Program

I

! |
i |
: Execution |~ 206 I~ 208 |
: Service @ !
: Manager C

212

[
: : |
[
Users : : Storage |
[[
' |
[

FIG. 2B

U.S. Patent Apr. 5, 2016 Sheet 4 of 8 US 9,304,796 B1
Node 310
Data Store 315
Issues 320 Solutions 325
API Parsing Analysis Flagging
330 Module Module Module
o 335 340 345
Notification Security Monitoring Page
Module Module Module Module
350 355 360 390
Virtualization Layer 305

y

Client Device
370a

Browser 375

Content Access
Application 380

Display 385 |

y

Client Device
370b

Content Access
Application 380

Display 385

FIG. 3

U.S. Patent Apr. 5, 2016 Sheet 5 of 8 US 9,304,796 B1

-
Receive an operating information report from

a virtual computing instance at a storage
server, the operating information report being " _~ 410
created by a request from a user of the virtual

computing instance
\. J

l

Parse the operating information report to
obtain a diagnostic result

420

4 N
Compare the diagnostic result against an

issues data store containing known virtual

computing instance issues to determine N\ 430

whether there is an existing issue for the
virtual computing instance

[Flag the existing issue when identified 440

Compare a flagged existing potential issue
against a solutions data store to identify a 450
cause of the flagged existing issue and a
solution to resolve the flagged potential issue

FIG. 4

U.S. Patent Apr. 5, 2016 Sheet 6 of 8 US 9,304,796 B1

Parse an operating information report of a

-

virtual computing instance to obtain a 510
diagnostic result
Compare the diagnostic result against a data
store of known computing instance issues to 520

determine whether there is a potential issue
for the virtual computing instance

e

[Flag the potential issue when identified

(9)]
W
o

[Provide flagged potential issues for display}/\/ 540

FIG. 5

U.S. Patent Apr. 5, 2016 Sheet 7 of 8 US 9,304,796 B1

Generate an operating information report for a
virtual computing instance

610

.

Transmit the operating information report to a
storage server for processing using a
temporary, signed URL

620

-

y

Receive a report identification from the storage
server in response to transmitting the operating
information report

630

.

Transmit the report identification to the storage
server to retrieve a processed result of the
operating information report

640

e

FIG. 6

U.S. Patent Apr. 5, 2016 Sheet 8 of 8

US 9,304,796 B1

Computing Device(s) 710

Processor(s)

712

Memory Device(s)

Parsing Module

\l
o~

2

Data
Store

Analysis Module

~J
(o}

2

Flagging Module
gging 728

720
I/O Networking
Devices Devices
714 716
| |

Client
Device
730

FIG. 7

o~ —

US 9,304,796 B1

1
IDENTIFICATION OF VIRTUAL
COMPUTING INSTANCE ISSUES

BACKGROUND

Computing devices have increased the efficiency of many
business operations. As technology improves, the functional-
ity and efficiency of computing devices may be extended or
improved. Technical advances in computing devices, how-
ever, may also result in increased complexity in the operation
or maintenance of the computing devices. One result of
increased complexity may be an increase in the difficulty of
trouble-shooting and correcting computing device operations
in the event of a malfunction or undesired operation.

Adding or removing hardware or software components to a
computing system may have an effect on performance or
operation of existing hardware or software components. This
may be applicable for physical computing devices or virtual
computing instances. In some examples, the effect on perfor-
mance or operation may be negative. Additionally, configu-
ration changes for systems, misconfiguration of systems, as
well as data corruption, user error and other factors may
negatively affect performance or operation of computing sys-
tems.

Traditionally, users of computing systems may contact a
technician, a customer service center or the like to seek assis-
tance in fixing problems or otherwise resolving system opera-
tion issues. However, communicating issues about the com-
puting system to a technician may be difficult for any number
of reasons. For example, the user may have difficulty
adequately expressing problematic symptoms, the user may
be unaware of what the problem is, the technician may be
typically unable to personally inspect the system, the techni-
cian be unable to accurately diagnose the problem without
additional information and so forth.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic overview of an example system for
providing an operating information report in accordance with
an example of the present technology.

FIG. 2A is a schematic diagram of an example virtual
computing instance diagnostic system, including a recovery
virtual computing instance, in accordance with an example of
the present technology.

FIG. 2B is a network diagram of an example distributed
computing system in accordance with an example of the
present technology.

FIG. 3 isablock diagram of a system for identifying virtual
computing instance issues in accordance with an example of
the present technology.

FIG. 41is a flow diagram of a method for identifying a cause
and a solution to flagged issues for a virtual computing
instance in accordance with an example of the present tech-
nology.

FIG. 5 is flow diagram of a method for identifying potential
virtual computing instance issues in accordance with an
example of the present technology.

FIG. 6 is a flow diagram of a method for generating a
virtual computing instance operating information report and
receiving a processed result of the operating information
report in accordance with an example of the present technol-
ogy.

FIG. 7 is ablock diagram of a system for identifying virtual
computing instance issues in accordance with an example of
the present technology.

15

20

25

30

40

45

2
DETAILED DESCRIPTION

The present technology may be used to identify virtual
computing instance issues. For example, an operating infor-
mation report from a virtual computing instance may be
parsed to obtain a diagnostic result. The diagnostic result may
be compared against a data store of known computing
instance issues to determine whether there is a potential issue
for the virtual computing instance. Potential issues may be
flagged when identified and these potential issues may be
provided for display.

In a more detailed example, the operating information
report may be received at a storage location or a virtualized
storage service from a virtual computing instance. The oper-
ating information report may be the result of a request from a
user of the virtual computing instance to create the operating
information report or the operating information report may be
created automatically by the virtual computing instance in
response to an event or according to a schedule. A manage-
ment server may parse the operating information report to
obtain a diagnostic result. For example, the management
server may perform an machine driven analysis of a string of
words, numbers, symbols, values, etc. in the operating infor-
mation report into its constituents, resulting in a parse tree
showing a syntactic relation of the constituents to one other,
which may also contain semantic information, monitoring
data, virtual computing instance statistics, and other informa-
tion. The diagnostic result may be compared against the
issues data store, which may contain known virtual comput-
ing instance issues, to determine whether there is an existing
issue for the virtual computing instance. The issues data store
or a different data store may include diagnostic scripts, analy-
sis tools or other data for identifying existing issues. When
issues are identified for the virtual computing instance, these
issues may be flagged. A user may be notified of the issues. In
one example, the notification may further include information
relating to a cause of the flagged existing issue and a sug-
gested or possible solution to resolve the flagged potential
issue.

FIG. 1 is a schematic overview of a system for identifying
virtual computing instance issues. The system may be imple-
mented in any of a variety of configurations. The example in
FIG. 1 is for illustration purposes and is not intended to be
limiting of potential configurations of systems. The system
may be implemented using a virtualized computing platform.
A user may operate one or more virtual computing instances
125 to execute an operating system and computing applica-
tions. A user may create, launch, and terminate virtual com-
puting instances 125 as desired. The user may have some
control over the geographical location of virtual computing
instances 125 to optimize latency and provide high levels of
redundancy.

The user may access and manage the one or more virtual
computing instances 125 over a network connection, such as
a connection through the Internet 120, for example. The user
may perform various operations on the virtual computing
instance(s) 125 such as adding, updating, modifying, deleting
or other otherwise maintaining software or services on the
virtual computing instance 125. These operations may be
performed by the user from a user device 110.

The virtual computing instance 125 may be part of the
virtualization computing platform, which may include a vir-
tual distributed computing system with a virtualization man-
agement layer 135 executing on a hardware layer 140. The
hardware layer 140 may include a plurality of physical com-
puters, servers or processing nodes. In this way, the virtual-
ization management layer 135 may execute across the plural-

US 9,304,796 B1

3

ity of computers found in the hardware layer 140. The
virtualization management layer 135 may provide a platform
on which virtual computing instances 125 may be created. In
other words, the virtual computing instances 125 may execute
across the plurality of computers found in the hardware layer
140 by using the platform provided by the virtualization
management layer 135. For example, the virtualization man-
agement layer may contain a hypervisor to manage the virtual
computing instances 125.

One operation that a user may perform on the virtual com-
puting instance is the creation of an operating information
report 152 that may be used for diagnostic purposes. With
reference to FIG. 1, the operating information report may be
created using a report generator 130. The operating informa-
tion report may also be referred to herein as a “diagnostic
report” or simply a “report”. The operating information report
may include any suitable information useful in diagnosing
performance or other issues with the virtual computing
instance. Some issues that are identifiable using data from the
diagnostic report may be issues that have not been recognized
by the user, but which may result in sub-optimal performance.
The operating information report may include, for example,
information such as the status of hardware resources, hard-
ware metrics, system response times, software metrics,
logged errors, service statuses, [/O (input/output) statuses,
running processes and services, central processing unit
(CPU) usage, disk or storage usage, network connections,
memory allocation, installed hardware and software, event
log details and so forth.

The operating information report 152 may be created at a
request of the user and may be created or requested to deter-
mine diagnostic or health information of the virtual comput-
ing instance 125, such as including information relating to an
operating system for the virtual computing instance 125, one
or more applications executing on the virtual computing
instance 125, hardware upon which the virtual computing
instance 125 is operating and so forth. The operating infor-
mation report 152 may thus include, for example, information
related to the operating system and a plurality of the applica-
tions, among other information.

The operating information report 152 may be a user-initi-
ated report. In other words, the generation of the operating
information report 152 may be at the request of the user, such
as a one-time request to generate multiple future reports or an
explicit request for each individual report. The operating
information report 152 may be generated periodically as a
form of a health status monitoring solution for the virtual
computing instance 125, where the periodicity of report gen-
eration may be user-defined and/or where the periodic oper-
ating information reports 152 are generated at the periodic
intervals after a single initial request by the user and without
further user interaction. Alternatively, the operating informa-
tion report 152 may be generated each time as a result of user
interaction explicitly requesting a one-time operating infor-
mation report 152. The user may request one-time or periodic
operating information reports 152 in the absence of any spe-
cific knowledge of issues with the virtual computing instance
125. The user may also request the operating information
report 152 in response to perceived performance issues or
other issues. However, the user potentially may yet lack any
specific knowledge of causes or solutions to the issues with
the virtual computing instance 125.

The operating information report 152 may be generated by
a report generator 130 that is created by third-party to a
developer of the operating system and/or one or more of the
applications included in the report. For example, the report
generator 130 may comprise third-party software that is not

10

15

20

25

30

35

40

45

50

55

60

65

4

integrated with the operating system or the applications
executing on the operation system and the third party soft-
ware may not be distributed as a package with the operating
system or application(s). In one example, the report generator
130 may not initially be integrated with the operating system
or the applications, but through installation of the third-party
report generator 130, the software may become at least par-
tially integrated with the operating system or one or more of
the applications.

Upon creation of the operating information report, the
operating information report 152 may be sent to a storage
bucket 150 at an object storage service 147 that is accessible
through or managed by a management service 145. For
example, a diagnostic technician may have access to the
storage bucket 150 through the management service 145.
Alternatively, the object storage service 147 may be accessed
or used directly through an application programming inter-
face (API). The present technology may utilize a signed and/
or temporary URL for the user to provide the operating infor-
mation report file to the object storage service 147. The
operating information report 152 may be stored, listed and
retrieved as an object in a storage bucket 150. An object may
be stored using a representational state transfer (REST) style
hypertext transfer protocol (HTTP) interface or a simple
object access protocol (SOAP) interface.

Requests for the operating information report 152 may be
authorized using an access control list associated with each
bucket. Bucket names and keys may be selected so that
objects are addressable using HTTP uniform resource loca-
tors (URLs). The URL for the operating information report
may be created with time-bounded validity. For example, the
URL may provide limited time access to store or retrieve the
operating information report, such as for a period of 30 min-
utes, 24 hours or another defined time period. The time-
bounded URL may be useful for security purposes, such as to
restrict access by third parties to the operating information
report, to restrict access by the user to the operating informa-
tion report after submission to ensure integrity of the operat-
ing information report, to limit access or copying rights for a
diagnostic technician to data in the operating information
report and so forth.

The management service 145 may parse the operating
information report and/or use any number of diagnostic
scripts or applications to analyze the operating information
report. The diagnostic scripts may be scripts for identifying
issues, problems, misconfigurations, inefficiencies, problem
metrics and so forth in the operation of virtual computing
instances, such as may be identified using the data included in
the operating information report.

Once one or more issues have been identified, the issues
may be flagged and included in a resolution report to the user
or to a diagnostic technician. The user or the diagnostic tech-
nician may use the resolution report to resolve the issues. For
example, the diagnostic technician may use the resolution
report to walk the user through resolution of the issues. Fur-
thermore, the diagnostic technician may use the resolution
report to study the cause of the issues in order to prevent or
minimize occurrence of the issues in the future. The diagnos-
tic technician may also access the operating information
report, portions of the operating information report, or an
extrapolation of the operating information report (such as the
resolution report or a summary of the operating information
report) over a network connection via a diagnostic technician
device 115.

In one example, the management service 145 may access
solution scripts for identifying solutions to flagged issues.
The solutions scripts may include information about how to

US 9,304,796 B1

5

resolve the flagged issues or may even include scripts for
resolving the issues on behalf of the user. The solutions
scripts or information included therein may be sent to the user
or to the diagnostic technician for use in resolving issues. In
one example, the solutions scripts may be automatically
applied to the virtual computing instance to automatically
repair and/or resolve the issues on the virtual computing
instance without human intervention, or the scripts may be
made available for execution by the user or the diagnostic
technician to initiate a resolution process.

Diagnostic technicians may have a limited ability to diag-
nose problems on the virtual computing instances that contain
user operating systems and software where there is no direct
access to the virtual computing instances. As a result, trouble-
shooting virtual computing instance issues may be difficult
and inefficient, particularly when the user has limited expe-
rience with or limited knowledge of the systems or software
involved. The present technology may address these issues by
using the operating information report data received from the
virtual computing instance and by performing predefined
diagnostics on the data, looking for particular issues.

In one example implementation, a diagnostic technician
may use data from the operating information report to diag-
nose virtual computing instance issues or problems. For
example, issues flagged in the operating information report
may be used to diagnose problems. In another example, the
management service may attempt to diagnose the problems
using the operating information report and the diagnostic
technician may review the information for accuracy or com-
pleteness. In another example, the present technology may
include an external-facing service to enable users to monitor
potential operating system (OS) issues or application con-
figuration issues personally. The external-facing service may
be the management service or a different service which
obtains at least one of the operating information reports or a
processed result of the operating information report and pro-
vides an output to report problems and suggest solutions, such
as may be viewable via an internet browser application.

The present technology may improve the working effi-
ciency of diagnostic technicians by pointing out problems
quickly instead of involving potentially long troubleshooting
processes. Further, the present technology may improve effi-
ciency through the external service implementation by allow-
ing users to monitor OS-specific problems rather than involv-
ing time and effort of diagnostic technicians because issues
may be identified and potentially even resolved without the
assistance of the diagnostic technicians. The present technol-
ogy may also increase the security of sharing user data (for
example, when sharing log files) because there may be no
direct download process. In other words, an information
report or derivative thereof may have access restricted thereto
or may be stored in a read-only format as will be described
later. Using an internal or external application programming
interface (API) available, robust diagnostics may be made
available to users or diagnostic technicians with minimal
manual intervention and which may also be used to trigger
other automated processes for recovery or other resolution
and reporting.

The present technology may provide a window into oper-
ating system (OS) level infrastructure health and application
health for support usage (e.g., by the diagnostic technician).
For example, the technology may be applied when given
permission by the user providing the diagnostic data. In one
example, the technology may enable the user to personally
monitor or resolve issues or other events or problems without
having to manually investigate a large number of compo-

10

15

20

25

30

35

40

45

50

55

60

65

6

nents. The present technology may thus enable an individu-
alized and powerful service for identitying and resolving
issues.

The present technology may further be used as a monitor-
ing tool for monitoring virtual computing instance health. In
other words, rather than performing diagnostic information
on operating information report data received in a report
created at the request of a user, the present technology may
continually monitor the virtual computing instance and ana-
lyze the continuous operating information report data using
the scripts described above to identify issues as the issues
occur to enable faster response times to issues. For example,
the report generator 130 may continually monitor and report
data while the management service 145 may continually ana-
lyze or otherwise process the data from the report generator.

The present technology may further involve the use of a
recovery virtual computing instance. When an error, problem,
or other issue is detected with the virtual computing instance
125, the user may launch the recovery virtual computing
instance. The recovery virtual computing instance may be a
newly created version of the virtual computing instance 125
known to be stable which may be used in place of the virtual
computing instance 125. In another example, the recovery
virtual computing instance may perform actions relative to
the virtual computing instance 125, such as stopping the
virtual computing instance 125, checking virtual computing
instance resources, and so forth.

FIG. 2A illustrates an example of a system using a virtual
computing instance 205 and a recovery virtual computing
instance 225. The virtual computing instance 205 and the
recovery virtual computing instance 225 may operate on a
virtualization management layer 215 and hardware layer 220,
as have been described previously.

In this example, the virtual computing instance 205 may
have malfunctioned in some way and diagnostics may be
difficult. For example, the virtual computing instance 205
may be inoperable, unreachable, or otherwise not performing
properly. As such, a report generator 210 on the virtual com-
puting instance 205 may be unusable to generate the operat-
ing information report. The recovery virtual computing
instance 225 may attempt to generate an operating informa-
tion report for the virtual computing instance 205 using a
report generator 230. However, if access is unavailable or the
virtual computing instance 205 has crashed, the root node or
storage volume 255 of the virtual computing instance 205
may be mounted to the recovery virtual computing instance
225, after which the report generator 230 may be used to
generate the operating information report. In other words, the
storage volume 255 may be unmounted from the virtual com-
puting instance 205 and mounted to the recovery virtual com-
puting instance 225 for generation and processing of the
operating information report. The recovery virtual computing
instance 225 may then send the operating information report
to the storage bucket 237 at the object storage service 235 for
processing.

In one example, the report generator 210 or 230 may be
initiated by a customer who owns the virtual computing
instance 205 by entering a command via a command prompt
or by selecting an option via a graphical user interface. The
report generator may proceed to gather data and may produce
acompressed report file. Depending on the virtual computing
instance, the report generator may take anywhere from sec-
onds or minutes up to an hour or more to generate an operat-
ing information report. The operating information report may
be configured to leave the virtual computing instance
unmodified, other than optional creation and storage of the
compressed report file on the virtual computing instance. The

US 9,304,796 B1

7

compressed report file may alternatively be stored in memory
and transmitted to the object storage service 235 without
storage at local virtual computing instance storage. The com-
pressed report file may be “unpacked” or decompressed using
any of a variety of existing compression/de-compression
utilities.

The report generator 210 or 230 may provide notice to the
user regarding the nature of the detailed information about the
hardware, software or the like identified for the virtual com-
puting instance, as well as notice regarding the usage of the
information for diagnostic purposes and that the information
will be considered confidential. Before the operating infor-
mation report file is transferred to the object storage service
235, the user may be prompted to confirm whether to proceed
with the operating information report. The user may further
optionally be asked some questions, such as a name or iden-
tification of the user, a reason for generating the operating
information report, a case number for which the operating
information report is being generated and so forth. Addition-
ally, the user may be permitted to specify other parameters for
creating the operating information report, such as a specific
type of data to collection, a location of data to collect, how to
handle certain data collected, whether to include particular
errors in the operating information report, whether there is a
preference for particular avenues of resolution of discovered
issues and so forth. Some of the user-configurable options,
switches or parameters for report generation may be used to
control what data is collected, which may be particularly
useful if the report generator “hangs™ or terminates on some
item or is otherwise unable to continue data collection during
a collection phase of the report generation.

Inside the unpacked report data may be any number of files
and/or subdirectories. For example, some directories may
include: boot, etc, sys, lib, root, proc, var and so forth. Some
example files may include: java, Ispci, pstree, sar27, chkcon-
fig free, mount, sestatus, uname, date, hostname, Isb-release,
netstat route, uptime, df, ifconfig, Ismod, sar10, dmidecode,
Isof, ps, sarl7 and installed-rpms. Many of the files may be
named similarly to common Linux commands and the direc-
tories may be similar to common Linux root level directories.
What data is captured may vary from virtual computing
instance to virtual computing instance depending on what is
installed on a particular virtual computing instance.

The following are brief descriptions of at least some of the
files which may be potentially included in an example oper-
ating information report:

java—contains information on the Java Runtime Environ-

ment including versions and locations of key files.

Ispci—contains output from the Ispci command which pro-

vides information about PCI (peripheral component
interconnect) devices on or used for the virtual comput-
ing instance.

pstree—a complete process list from the system in parent

child relationship.

sar<nn>—System Activity Report (SAR) performance

data captured and processed for the date of the generated
report.

chkconfig—a listing of the chkconfig startup, or in other

words a list of applications and daemons which are

started for the virtual computing instance run level.
free—output from a free memory information command.
mount—output from a mount command, such as may indi-

cate which file systems are mounted.
sestatus—provides indication as to whether a Security

Enhanced operating system is enabled.
uname—provides the kernel version.

date, hostname—Date and Host name.

5

10

15

20

25

30

35

40

45

50

55

60

65

8

Isb-release—Description of the operating system release.

netstat, route—output from standard networking com-
mands.

Uptime, df, ifconfig, lsmod—includes uptime of system,
file system usage, network interface configuration, and
kernel module list.

dmidecode—hardware information, such as bios version,
system serial number and so forth.

installed-rpms—a list of software packages installed.

Isof and ps—Ilists of open files and running processes.

In addition to a number of top level diagnostic files, an
unpacked report may contain a number of directories and
subdirectories, as has been described. Some examples of
these may be as follows:

The boot directory—contains files from the system’s/boot
directory. Of special interest may be a boot/grub/grub-
.conf file which contains the definition of the grub boot
menu and information on which kernel image is booted
by default and which switches were provided during
boot to that image.

The etc directory—contains system configuration files
from the system’s/etc directory including several sub-
directories. The list of files may be extensive and may
include network configuration files along with other
configuration data. Other contents of the etc directory
may include module and network-scripts information,
for example.

The proc directory—contains various process data related
to the running kernel.

The var/log directory—contains system logs. After gather-
ing general information about the configuration of a
virtual computing instance, this data may be useful in
identifying and analyzing log entries leading up to a
hang or crash, or whatever other event may have lead the
user to create an operating information report.

Often operating information reports may be generated in
response to a crash or malfunction of the virtual computing
instance, such as may involve rebooting of the virtual com-
puting instance to get the virtual computing instance up and
running again. When a precise time of the event is unavail-
able, the time may sometimes be located by searching mes-
sages files in the var/log directory. The messages may indicate
a date and time at which a virtual computing instance was
rebooted. Messages prior to the date and time may be ana-
lyzed to find data indicating when or where issues began
occurring. In connection with the data contained in the oper-
ating information report, time stamps may be used to corre-
late any recorded hardware errors.

The present technology may manage operating informa-
tion reports for virtual computing instances using virtualized
computing technologies. Virtualized computing is the use of
computing resources (hardware and software) which are
available in a remote location from the users of the computing
resources and the virtualized computing resources are acces-
sible over a network, such as the Internet. Users are able to
buy these computing resources (including storage and com-
puting power) as a utility on demand and sometimes by the
hour. Virtualized computing entrusts remote services with a
user’s data, software and computation. Use of virtual com-
puting resources can provide a number of advantages includ-
ing cost advantages and/or ability to adapt rapidly to changing
computing resource needs.

Web services may be associated with the virtualized com-
puting. A web service may be a software function provided at
a network address over the web or the internet. Clients may
initiate requests to servers; and the servers may process
requests and return the appropriate responses. The client

US 9,304,796 B1

9

requests are typically initiated using an API (application pro-
gramming interface) request. An APl is a programmatic inter-
face to a defined request-response message system, some-
times expressed in JSON (JavaScript Object Notation) or
XML (Extensible Markup [Language), which is often exposed
via the web by means of an HTTP (Hypertext Transfer Pro-
tocol)-based web server.

Client-side endpoint configuration can be accomplished by
allowing a client to include as part of a network request (e.g.,
an API request), a desired endpoint for subsequent notifica-
tions from a server. The endpoint can be an endpoint identi-
fier, such as a Uniform Resource Identifier (URI) or a domain
name. The URI can be a variety of types of identifiers, such as
Uniform Resource Locators (URL) or a Uniform Resource
Name (URN). The URI can include an IP (Internet Protocol)
address/hostname. When a web service receives the API
request from a client device, the web service can generate a
response to the request and send the response to the endpoint
identified in the request.

A virtual network provider (i.e., a virtualization provider)
may be capable of delivery of computing and storage capacity
as a service to a community of end recipients. In an example
embodiment, the virtual network provider may be established
for an organization by or on behalf of the organization. That
is, the virtual network provider may offer a “virtual private
cloud environment.” In another embodiment, the virtual net-
work provider may support a multi-tenant environment,
wherein a plurality of customers may operate independently
(i.e., a public cloud environment). Generally speaking, the
virtual network provider may provide the following models:
Infrastructure as a Service (“laaS™), Platform as a Service
(“PaaS”), and/or Software as a Service (“SaaS”). Other mod-
els may also be provided. For the IaaS model, the virtual
network provider may offer computers as physical or virtual
machines and other resources. The virtual machines may be
run as guests by a hypervisor, as described further below. The
PaaS model may deliver a computing platform that can
include an operating system, programming language execu-
tion environment, database, and web server. Application
developers may develop and run software solutions on the
virtual network provider platform without the cost of buying
and managing the underlying hardware and software. The
SaaS model allows installation and operation of application
software in the virtual network provider. In some embodi-
ments, end users may access the virtual network provider
using networked client devices, such as desktop computers,
laptops, tablets, smartphones, etc. running web browsers or
other lightweight client applications.

In one example, a virtual network provider may include
any number of server computers. The server computers may
provide computing resources for executing software or vir-
tual computing instances, which may also be referred to as
virtual computing instances or virtual machines. A virtual
machine may be an instance of a software implementation of
a machine (i.e. a computer) that executes applications simi-
larly as a physical machine. In the example of virtual
machine, each server may be configured to execute an
instance manager capable of executing the virtual computing
instances. The instance manager may be a hypervisor or
another type of program configured to enable the execution of
multiple instances on a single server. Additionally, each of the
instances may be configured to execute one or more applica-
tions.

It should be appreciated that although the embodiments
disclosed herein are described primarily in the context of
virtual computing instance or virtual machines, other types of
instances can be utilized with the concepts and technologies

30

35

40

45

10

disclosed herein. For instance, the technologies disclosed
herein can be utilized with storage resources, data communi-
cations resources, and with other types of computing
resources. The embodiments disclosed herein might also
execute all or a portion of an application directly on a com-
puter system without utilizing virtual machine instances.

FIG. 2B is a network diagram of an example distributed
computing system 200 such as may be implemented for any
of'the examples of the present technology described herein. A
number of users 212 may be interacting over a network 204
with an exemplary Distributed Program Execution Service
System Manager (DPE Service SM or DPESSM) module 206
to initiate distributed execution of applications on one or
more computing nodes 208 that are available for executing
applications of the users. For example, a DPESSM module
206 may provide some or all of the functionality of a DPE
(Distributed Program Execution) service.

The network 204 may, for example, be a publicly acces-
sible network of linked networks such as the Internet, and
possibly operated by various distinct parties. Alternatively,
the network 204 may be a private network, such as, for
example, a corporate or university network that is wholly or
partially inaccessible to non-privileged users. Further, the
network 204 may include one or more private networks with
access to and/or from the Internet. The DPESSM module 206
and the computing nodes 208 may be provided by a DPE
service provider 202 as part of a DPE service, as well as one
or more optional other storage nodes 216 and the DPESSM
module 206 may execute on one or more other computing
systems. The dashed lines of the storage nodes 216 and the
remote storage services 214 indicate that these components
are optional. Similarly, the dashed lines of the DPE service
provider indicate that the enclosed components may or may
not be proximately located, for instance, in the same machine,
in the same local network, or in the same data center.

The illustrated computing nodes 208 may be provided by
the DPE service provider 202 for distributed execution of
applications on behalf of the users, and may include multiple
physical computing systems and/or multiple virtual machines
that are hosted on one or more physical computing systems.
Each of the computing nodes 208 may have some amount of
computing resources available for executing one or more
applications, such as may be measured, for example, by a
combination of one or more of: processing capacity, memory
capacity, storage capacity, disk I/O capacity, etc. The DPE
service provider 202 may provide preconfigured computing
nodes, with each preconfigured computing node having simi-
lar and/or equivalent amounts of computing resources avail-
able for executing applications on behalf of users, while in
other examples, the DPE service provider 202 may provide a
selection of various different computing nodes, such as with
different types or groups of computing nodes having varying
amounts and/or types of computing resources. The comput-
ing nodes 208 may each include one or more virtual comput-
ing instances 218 and at least a portion of an application code
package 222.

The various users 212 may interact with the DPESSM
module 206 to make requests, submit data and otherwise
interact with applications, system components and so forth.
Such user requests may be made at various times, such as
when a user registers to use services of the DPE service and/or
at later times. For example, the users may interact with the
DPESSM module 206 to initiate and configure execution of
applications in various ways, such as by specifying a number
and/or type of computing nodes for execution of applications,
a minimum and/or maximum number of computing nodes to
use, a preferred execution time and/or period of execution, an

US 9,304,796 B1

11

expiration time for the application execution request, a selec-
tion of one of multiple priorities for the execution. A user may
interact with the DPESSM module 206 to request immediate
execution of one or more applications on a specified number
of computing nodes and/or to schedule such execution at one
ormore future times, such that the DPESSM module 206 may
initiate the requested execution on the specified number of
computing nodes at a specified time or when one or more
specified criteria are satisfied.

The DPE service may provide a variety of functionality for
managing distributed execution of applications for multiple
users on the computing nodes 208. For example, as previ-
ously noted, a particular user may use a GUI (graphical user
interface) or API provided by the DPESSM module 206 to
submit a request for execution of an indicated application
using indicated input data, optionally along with a variety of
other types of configuration information. After the request for
execution of the application is received, the DPESSM module
206 may select which of the available computing nodes 208 to
use for the requested execution in various ways. The
DPESSM module 206 may simply select an appropriate
quantity of computing nodes from any of the available com-
puting nodes with sufficient resources, such as, for example,
by randomly selecting from a pool of available computing
nodes. One or more specific computing nodes may be
selected on the basis of one or more other factors, such as, for
example, a predicted length of and/or likelihood of continued
availability of the one or more computing nodes, a physical
proximity of the one or more specific computing nodes to one
or more other computing nodes, a geographic location of the
one or more specific computing nodes and/or of one or more
other computing nodes, etc. In addition, after the request is
received, the DPESSM module 206 may further determine
how to separate the indicated application into multiple execu-
tion jobs to be executed on the multiple selected computing
nodes, such as by using information supplied by the user
and/or in an automatic manner based on previously obtained
information about the design of the indicated application. The
DPESSM module 206 may determine how to separate the
indicated input data into multiple subsets for use by the mul-
tiple execution jobs. For example, in some situations, each
execution job may include executing a full copy of the indi-
cated application but on a particular subset of input data,
while the other execution jobs similarly execute the full appli-
cation copy functionality on other input data subsets. Alter-
natively, in some situations, various execution jobs may per-
form different functions on a single common set of input data.

As the execution jobs execute on the various computing
nodes, the execution jobs may store various information
locally on the computing nodes. In addition, the DPE service
may optionally provide one or more storage nodes 216 that
are used by the DPE service to store information related to
application execution and/or for other purposes. As discussed
in greater detail elsewhere, such information stored on the
storage nodes 216 may include status information regarding
the intermediate state of partial execution of various execu-
tion jobs for various applications, and may optionally include
output data that is generated by completed execution jobs.

In addition, as the execution jobs of an application execute
in a distributed manner on the various computing nodes of a
cluster for that application, the DPE service may automati-
cally perform various actions to dynamically monitor and/or
modify the ongoing distributed execution of the application.
For example, the dynamic modifying of the ongoing distrib-
uted execution of the application on the multiple computing
nodes of the cluster may include optionally performing vari-
ous types of changes in certain situations, and the DPESSM

10

15

20

25

30

35

40

45

50

55

60

65

12

module 206 may select which types of actions to pursue in
which situations (e.g., based on predefined criteria specified
generally for the DPE service, or specified specifically for the
application being executed or other user on whose behalf the
application is being executed). For example, if the DPESSM
module 206 automatically determines to dynamically add
and/or remove computing nodes from the cluster, the
DPESSM module 206 may further select which computing
nodes to add or remove, such as in a manner to the selections
made initially by the DPESSM module 206 in selecting par-
ticular computing nodes for the cluster. In addition, if the
DPESSM module 206 automatically determines to make
other types of changes to the ongoing distributed application
execution, the DPESSM module 206 may similarly deter-
mine which types of changes to make.

Furthermore, the DPESSM module 206 may provide indi-
cations to cause the intermediate state of partial execution of
one or more execution jobs to be persistently stored before the
partial execution of the execution job is temporarily termi-
nated or otherwise suspended. Such intermediate state infor-
mation for the partial execution may be stored in various
manners remotely from the computing node on which the
partial execution occurred, such as by copying such interme-
diate state information to one or more of the optional storage
nodes 216 and/or by using one or more optional remote stor-
age services 214 that are accessible over the network 204. In
one example, a virtual computing instance volume 255 may
be unmounted from a virtual computing instance, moved or
copied to a remote storage service 214 and mounted to a
recovery virtual computing instance, as described above with
reference to FIG. 2A for recovery. In another example, an
operating information report 232 from a virtual computing
instance 218 may be initially copied to a storage node 215 and
then copied from a storage node 216 to a remote storage
service 214 for processing or for access by one or more users
or diagnostic technicians.

The DPESSM module 206 may coordinate the storage of
the intermediate state information from the computing node
to the remote persistent storage location, such as by using
information that the DPESSM module 206 tracks about the
intermediate state of the partial execution, while in other
examples the activities in performing the persistent storage of
the intermediate state information may instead be performed
by management software executing on the computing node to
locally manage the execution of the execution job. Alterna-
tively, if a particular executing execution job is able to store its
own intermediate execution state, the DPESSM module 206
may instead notify the execution job to perform its own inter-
mediate execution state storage actions before shutting down
its own execution. After the intermediate state of partial
execution of an execution job has been persistently stored and
the partial execution has been terminated, the partial execu-
tion may be resumed from that suspended intermediate state
at a later time, such as substantially immediately, or instead
after a longer period of time. At the time of execution resump-
tion, the stored intermediate state information may be
retrieved from the persistent storage location, and be locally
stored on or otherwise made available to the computing node
on which the execution job execution is to resume. In addi-
tion, the partial execution of the execution job may be
resumed in various manners, such as by indicating to the
execution job not to perform a subset of operations that were
previously completed, by modifying the execution job to only
perform a subset of the operations that were not previously
completed, etc.

Referring now to FIG. 3, a block diagram of a system is
illustrated that may be used for identification of virtual com-

US 9,304,796 B1

13

puting instance issues in accordance with an example of the
present technology. The node 310 may be an implementation
ofanodein a virtualized computing system, as described with
reference to FIG. 2A, and may be implemented on a virtual-
ization layer 305, as described with reference to FIG. 1. The
node 310 may be a server in a virtualized or distributed
computing system and the client devices 370a-3705 may be
used by users or diagnostic technicians to interact with the
virtualized computing system using, for example, a client
application 380 or browser application 375 and a display 385
on the client device 3704, 37056. The node 310 may include a
data store 315 and a number of modules 330, 335, 340, 345,
350, 3555, 360, 390 for storing and processing data. In one
example, these modules may be used in a management ser-
vice 145, as illustrated in FIG. 1.

An issues data store 320 may include, for example, data
related to potential issues which are known to occur and
which a virtual computing instance may experience. The
issues data store 320 may include identifications and/or
descriptions of the issues as well as scripts or other data which
may be used in recognizing an issue in an operating informa-
tion report. The issues data store 320 may be populated
according to issues experienced or encountered on various
virtual computing instances within a virtualized computing
environment. The scripts and other data may be submitted by
users or diagnostic technicians. Scripts created in response to
an issue for a particular user’s virtual computing instance
may be available solely for future use by the particular user or
for the particular virtual computing instance, or may be made
available for diagnostic use with reports from any other user
or virtual computing instance. The scripts may optionally be
read-only or may have write permissions as well so that the
scripts can be updated over time by technicians. In one
example, the scripts may include machine learned scripts, as
will be described in greater detail later. In another example,
scripts may check to see whether certain numerical metrics
have gone outside a defined range or whether a value is
incorrectly set.

A solutions data store 325 may optionally be present and
may include, for example, data related to solutions to known
issues which may be potentially encountered by a virtual
computing instance. The solutions data store 325 may include
identifications and/or descriptions of solutions to issues and
may be correlated (e.g., ranked based on relatedness or
directly mapped) to issues included in the issues data store
320. The solutions data store 325 may include multiple poten-
tial solutions for any given issue in the issues data store 320.
Solution data from the solutions data store 325 may be trans-
mitted to a user or to a diagnostic technician to assist in
resolving issues discovered from the operating information
report. The solutions data store 325 may optionally include
scripts for resolving discovered issues in the absence of
manual or user intervention. The scripts may be submitted to
the solutions data store 325 by users or diagnostic techni-
cians. The scripts in the solutions data store 325 may be made
widely available to any user or may have more limited or
restricted access and use, as may depend upon system con-
figurations, user preferences or the like. The solutions scripts
may also include machine learned scripts, as will be described
later.

While FIG. 3 illustrates data store 315 as including the
issues data store 320 and the solutions data store 325, these
respective data stores may be independent of one another and
may be stored separately from one another as opposed to
being different portions of a same data store (i.e., data store
315).

20

30

40

45

55

14

The node 310 may interface with the network 365. In this
way, the node 310 may be able to communicate with the client
device 370a, 3705. This communication may be further oper-
able with various modules within the node 310. For example,
the monitoring module 360 may communicate with the client
device 370a, 3705 over the network 365 directly or via one or
more intermediate modules.

The system may include an API 330 to receive an operating
information report. In one example, the API may be config-
ured to respond differently to requests for data received from
virtual computing instances depending on a URL used to
access the API or information sent via the API from the virtual
computing instances, such as whether the URL includes a
report identification. For example, when the API is called
without a report identification number in the URL, the API
may enable the system to receive an operating information
report generated by a virtual computing instance but the API
may not facilitate loading of an existing operating informa-
tion report or processed result thereof. When the API is called
with a report identification by the user, the API may cause
virtual computing instance diagnostic information to be
retrieved and provided to the user. The diagnostic information
may optionally include review or solution information by a
diagnostic technician. The virtual computing instance diag-
nostic information may include any available or suitable
information from the issues data store 320 and/or solutions
data store 325 as may be applicable for issues identified from
the operating information report.

The system may include a parsing module 335 to parse the
operating information report to obtain a diagnostic result. The
parsing module 335 may take input text and build a data
structure (such as a parse tree, abstract syntax tree or other
hierarchical structure, for example) giving a structural repre-
sentation of the input, while checking for correct syntax in the
process. The resultant data structure may be configured for
use by an analysis module 340.

The system may include an analysis module 340, which
may use the issues data store and the diagnostic result (i.e., the
output of the parsing module 335) to determine whether there
is an existing issue for the virtual computing instance. For
example, the analysis module may execute one or more
scripts in the issues data store 320 for identifying potential
issues in the operating information report.

The system may include a flagging module 345. The flag-
ging module 345 may flag existing issues when present. In
other words, when the scripts identify an issue in the diag-
nostic result, the issue may be flagged. The user or a diagnos-
tic technician may optionally be notified of flagged issues.
Flagged issues may be compiled into a flagged issues report,
which may include any available data related to the flagged
issues, such as cause, solution, description and so forth.

The system may include a notification module 350 to
notify a user of the virtual computing instance of at least one
of a potential cause or a potential solution to the existing
issue, such as through the flagged issues report. The flagged
issues report may be made available to the user and/or the
diagnostic technician through a virtual computing storage
bucket, which may be accessible for a limited time to users
with the appropriate credentials or report identification and so
forth. For example, flagged issues reports may be available
for 30 days from creation in a read-only format, and may be
accessible to users in possession of the report identification.
In one example, the flagging module 345 may also flag an
operating information report when an issue is recognized to
be present (e.g., when data indicates the virtual computing
instance is underperforming or somehow misbehaving) but
the scripts do not identify a known issue. In this example, a

US 9,304,796 B1

15

human may manually review the operating information report
to identify a cause and potential solution. The cause and
solution may be documented and added to the issues and
solutions data stores 320, 325.

The system may include a security module 355. The secu-
rity module 355 may be used to implement security precau-
tions to protect user privacy and user data in any of a number
of different ways. For example, the security module 355 may
restrict submission of the operating information report to
submissions through the API via a temporary, signed URL.
Any attempted submissions not submitted through the API
may be rejected. The security module 355 may restrict access
to the operating information report by a user to access
requests through the API including the report identification.
In other words, access requests missing the report identifica-
tion may be rejected or dropped.

In one example, the security module 355 may restrict
access to the operating information report by a diagnostic
technician to a subset of information included in the operating
information report and to access via an administration inter-
face. Although a user may be willing to permit a diagnostic
technician to review sufficient detail of the operating infor-
mation report to assist in resolving any issues, the operating
information report may include a great deal of information
which may be unrelated to any potential issues but which may
be sensitive, or rather to which the user does not wish to be
made available to the diagnostic technician. In one example,
the analysis module 340 may perform an analysis on the
operating information report and information that is irrel-
evant to any identified issues may be excluded from access by
the diagnostic technician. In another example, the data in the
operating information report that is available in identified
folders, locations or available through identified processes on
the virtual computing instance may be restricted from access
by the diagnostic technician. In another example, access to
certain data may be restricted on a report-by-report basis as
dictated by the user requesting the operating information
report.

The system may include a monitoring module 360. The
monitoring module 360 may be configured to receive a plu-
rality of the operating information reports from a same virtual
computing instance over time. The monitoring module 360
may use the successive reports to identify issues when
changes to the virtual computing instance occur which trigger
at least one of the scripts. The monitoring module 360 may
receive operating information reports on a periodic basis,
such as monthly, weekly, daily, hourly, minute-by-minute and
so forth. In one aspect, the operating information reports may
be combined as a single continuous operating information
report generated continuously, where changes in data
included in the report are analyzed by the scripts and data that
is unchanged is not analyzed to conserve computing
resources.

Operating information reports, identification of issues,
resolution of issues and so forth may be used to create one or
more machine learned models for identifying and resolving
issues. For example, the model may learn from the successes
of previous issue identifications and solutions to determine
whether a particular identification or solution is likely to be
accurate for a given set of circumstances in a future operating
information report. The system may log a wide variety of data
points included in each operating information report, includ-
ing what issues were identified using which scripts, which
solutions were suggested, feedback from users on whether the
issues were accurately identified, feedback from users or in
the form of subsequent operating information reports as to
whether suggested solutions were successful and so forth. In

10

15

20

25

30

35

40

45

50

55

60

65

16

other words, a wide variety of considerations may be included
as part of a machine learning approach for creating and opti-
mizing the model. The model may be learned using any of a
variety of machine learning technologies.

Machine learning may be useful as a method that takes as
input empirical data and yields patterns or predictions which
may be representative of the underlying mechanism or pro-
cess that resulted in the generation of the data. Machine
learning systems may take advantage of data to capture char-
acteristics of interest having an unknown underlying prob-
ability distribution. Machine learning may be used to identify
possible relations between observed variables, such as
aspects of user interaction with respect to time and page
requests. Machine learning may also be used to recognize
complex patterns and make intelligent decisions based on
input data. In some examples, machine learning systems may
generalize from the available data to produce a useful output,
such as when the amount of available data is too large to be
used efficiently or practically. As applied to the present tech-
nology, machine learning may be used to make modifications
to issue identification and/or resolution on a basis of context,
success or on any other suitable basis in order to test whether
an accuracy or success of identification or resolution of issues
is improved through the modification.

Machine learning may be performed using a wide variety
of methods of combinations of methods, such as supervised
learning, unsupervised learning, temporal difference learn-
ing, reinforcement learning and so forth. Some non-limiting
examples of supervised learning which may be used with the
present technology include AODE (averaged one-depen-
dence estimators), artificial neural network, back propaga-
tion, Bayesian statistics, naive bayes classifier, Bayesian net-
work, Bayesian knowledge base, case-based reasoning,
decision trees, inductive logic programming, Gaussian pro-
cess regression, gene expression programming, group
method of data handling (GMDH), learning automata, learn-
ing vector quantization, minimum message length (decision
trees, decision graphs, etc.), lazy learning, instance-based
learning, nearest neighbor algorithm, analogical modeling,
probably approximately correct (PAC) learning, ripple down
rules, a knowledge acquisition methodology, symbolic
machine learning algorithms, subsymbolic machine learning
algorithms, support vector machines, random forests,
ensembles of classifiers, bootstrap aggregating (bagging),
boosting (meta-algorithm), ordinal classification, regression
analysis, information fuzzy networks (IFN), statistical clas-
sification, linear classifiers, fisher’s linear discriminant,
logistic regression, perceptron, support vector machines, qua-
dratic classifiers, k-nearest neighbor, hidden Markov models
and boosting. Some non-limiting examples of unsupervised
learning which may be used with the present technology
include artificial neural network, data clustering, expectation-
maximization, self-organizing map, radial basis function net-
work, vector quantization, generative topographic map, infor-
mation bottleneck method, IBSEAD (distributed
autonomous entity systems based interaction), association
rule learning, apriori algorithm, eclat algorithm, FP-growth
algorithm, hierarchical clustering, single-linkage clustering,
conceptual clustering, partitional clustering, k-means algo-
rithm, fuzzy clustering, and reinforcement learning. Some
non-limiting example of temporal difference learning may
include Q-learning and learning automata. Another example
of machine learning includes data pre-processing. Specific
details regarding any of the examples of supervised, unsuper-
vised, temporal difference or other machine learning
described in this paragraph that are generally known are also
considered to be within the scope of this disclosure.

US 9,304,796 B1

17

The system may include a page module 390 for displaying
network pages, including user interfaces, issue data, report
data and any other suitable object or data for facilitating or
enhancing user interaction with the system. The page module
390 may be used for providing data, graphical user interfaces
and so forth for display on the client device 370a, 3705.

In one aspect, the page module 390 may enable user feed-
back on the issue identification or solutions, and may enable
submission of scripts. For example, the user may be enabled
to rate performance or accuracy of identifications, suggested
solutions, etc. The rating may be a quantitative rating, such as
a rating out of five stars, or the rating may be qualitative, such
as to indicate whether the identification or solution is relevant,
useful, helpful, etc. The rating may also be a comment or
other textual feedback, and may optionally be in the form of
computer programming code in the form of a script. Use of
user feedback may serve multiple purposes. The user feed-
back may assist in identifying personal preferences of an
individual user such that future issues may be addressed in a
manner tailored to the specific user.

The node 310 may comprise, for example, a server com-
puter, a virtual server image, or any other system providing
computing capability. Alternatively, a plurality of nodes 310
may be employed that are arranged, for example, in one or
more server banks or computer banks or other arrangements
to form a distributed computing system.

Client devices 370a-3705 may access data, reports and so
forth via the node 310 over the network 365. In other words,
access to a storage bucket may be available via the node 310,
in one example. In another example, an operating information
report or processed result thereof stored in the storage bucket
may be accessed via the browser 375. Example client devices
370a-37056 may include, but are not limited to, a desktop
computer, a laptop, a tablet, a mobile device, a television, a
cell phone, a smart phone, a hand held messaging device, a
set-top box, a gaming console, a personal data assistant, an
electronic book reader, heads up display (HUD) glasses, a car
navigation system, or any device with a display 385.

Various processes and/or other functionality, as discussed
herein, may be executed according to various examples. The
node 310, may for example, provide some central server
processing services while the client device 3704, 3706 may
provide local processing services and interface processing
services to interface with the services of the node 310. There-
fore, it is envisioned that processing services, as discussed
herein, may be centrally hosted functionality or a service
application that may receive requests and provide output to
other services or customer devices.

For example, the services may be considered on-demand
computing that is hosted in a server, cloud, grid, or cluster
computing system. An application program interface (API)
may be provided for each service to enable a second service to
send requests to and receive output from the first service.
Such APIs may also allow third parties to interface with the
service and make requests and receive output from the ser-
vice. A processor may provide processing instructions by
communicating with a memory on the node 310. In other
words, the memory device may include instructions operable
to be executed by the processor to perform a set of actions.
The processor and/or the memory may directly or indirectly
communicate with the data store 315. The processor, memory
and the node 310 may be virtualized.

Various data may be stored in the data store 315 that is
accessible to the node 310. The term “data store” may refer to
any virtualized device or combination of physical and virtual
devices capable of storing, accessing, organizing and/or
retrieving data, which may include any combination and

20

25

30

40

45

18

number of data servers, relational databases, object oriented
databases, data storage devices, data warehouses, flat files
and data storage configuration in any centralized, distributed,
or clustered environment. The storage system components of
the data store 315 may include storage systems such asa SAN
(Storage Area Network), a cluster storage network, volatile or
non-volatile RAM, optical media, or hard-drive type media.
The data store 315 may be representative of a plurality of data
stores 315.

The client devices 370a, 3705 shown in FIG. 3 are repre-
sentative of a plurality of client devices that may be coupled
to the network. The client devices may communicate with the
node 310 over any appropriate network, including an intranet,
the Internet, a cellular network, a local area network (LAN),
a wide area network (WAN), a wireless data network or a
similar network or combination of networks.

Each client device 370qa, 37056 may include a respective
display 385. The display 385 may comprise, for example, one
or more devices such as cathode ray tubes (CRTs), liquid
crystal display (LCD) screens, gas plasma based flat panel
displays, LCD projectors, or other types of display devices,
etc.

Each client device 370a, 3705 may be configured to
execute various applications such as a browser 375, client
application 380 and/or other applications. The browser 375
may be executed in a client device 370a, 3705, for example,
to access and render pages, such as web pages or other net-
work data served up by the node 310 and/or other servers. The
client application 380 may be executed to obtain and render
for display data from the node 310, or other services and/or
local storage media. A client device may be a hardware device
which is used by the user to access a virtual computing
instance.

In some embodiments, the client application 380 may cor-
respond to code that is executed in the browser 375 or plug-ins
to the browser 375. In other embodiments, the client applica-
tion 380 may correspond to a standalone application, such as
a mobile application. The client device 370a, 3706 may be
configured to execute applications beyond those mentioned
above, such as, for example, mobile applications, email appli-
cations, instant message applications and/or other applica-
tions. Users at client devices 370a, 3706 may access data,
such as the processed result of operating information reports,
through display devices or through client applications 380
executed in the client devices 370a, 37054.

Certain processing modules may be discussed in connec-
tion with this technology. In one example configuration, a
module may be considered a service with one or more pro-
cesses executing on a server or other computer hardware.
Such services may be centrally hosted functionality or a ser-
vice application that may receive requests and provide output
to other services or customer devices. For example, modules
providing services may be considered on-demand computing
that is hosted in a server, cloud, grid or cluster computing
system. An application program interface (API) may be pro-
vided for each module to enable a second module to send
requests to and receive output from the first module. Such
APIs may also allow third parties to interface with the module
and make requests and receive output from the modules.
Third parties may either access the modules using authenti-
cation credentials that provide on-going access to the module
or the third party access may be based on a per transaction
access where the third party pays for specific transactions that
are provided and consumed.

Referring now to FIG. 4, a flow diagram of a method for
identifying issues with a virtual computing instance is illus-
trated in accordance with an example of the present technol-

US 9,304,796 B1

19

ogy. The method may include receiving 410 an operating
information report from a virtual computing instance at a
storage service, the operating information report being cre-
ated by a request from a user of the virtual computing
instance. The method may further include parsing 420 the
operating information report to obtain a diagnostic result and
comparing 430 the diagnostic result against an issues data
store containing known virtual computing instance issues to
determine whether there is an existing issue for the virtual
computing instance. The method may include flagging 440
the existing issue when identified and comparing 450 a
flagged existing potential issue against a solutions data store
to identify a cause of the flagged existing issue and a solution
to resolve the flagged potential issue.

The method may include notifying the user of the cause and
the solution. The method may also include receiving addi-
tional known virtual computing instance issue data and stor-
ing the additional known virtual computing instance issue
data in the issues data store, such as after an unrecognized
issue is identified by a human or through machine learning
attempts at identifying and/or resolving issues using symp-
toms found in the operating information report. Similarly, the
method may include receiving additional cause and solution
data and storing the additional cause and solution data in the
solutions data store.

In some examples, this or other methods described herein
may be implemented wholly or partially as computer read-
able program code executed by a processor and the computer
readable code may be embodied on a non-transitory computer
usable medium.

Referring to FIG. 5, a flow diagram of a method is illus-
trated in accordance with the present technology in which an
operating information report of a virtual computing instance
may be parsed 510 to obtain a diagnostic result. The diagnos-
tic result may be compared 520 against a data store of known
computing instance issues to determine whether there is a
potential issue for the virtual computing instance. The poten-
tial issue may be flagged 530 when identified (in which case
the potential issue may be no longer a potential issue but may
be an actual or existing issue). In one example, flagged poten-
tial issues may remain considered as a potential issue, such as
if an analysis does not conclusively determine that the flagged
issue is an actual issue. The flagged potential issue may be
provided 540 for display to a user or a diagnostic technician.

The method may include comparing the flagged potential
issue against a solutions data store to identify a cause of the
flagged potential issue and a solution to resolve the flagged
potential issue. The method may also include storing the
operating information report as aread-only report with access
limited to the user and a diagnostic technician.

In one example, the method may include receiving the
operating information report at a virtual storage location or
bucket associated with the virtual computing instance. The
operating information report may have been created by
request from a user of the virtual computing instance. The
flagged potential issues may be provided for display to a
diagnostic technician via the storage bucket. The operating
information report may be received at the storage bucket via
an Application Programming Interface (API) using a tempo-
rary, signed Uniform Resource Locator (URL).

The method may also include generating a report identifi-
cation (ID) in response to receiving the operating information
report at the storage bucket and transmitting the report iden-
tification (ID) to the virtual computing instance. Additionally,
a subsequent request for report information may be received

10

15

20

25

30

35

40

45

50

55

60

65

20

viathe API from the virtual computing instance and providing
the flagged potential issues for display in response to the
subsequent request.

In some examples, the method may include expiring the
operating information report after a predetermined period of
time. The predetermined period of time may be a set or fixed
period of time or may be vary depending on user preferences,
number of reports requested to be stored, subscription levels
and so forth. In some examples, the method may include
restricting access to portions of the operating information
report to ensure privacy of a user of the virtual computing
instance. Additional technology configurations may include
receiving scripts from a plurality of users for identifying the
known computing instance issues and storing the scripts in
the data store of known computing instance issues, the scripts
including scripts for identifying the known computing
instance issues across a plurality of computing platforms.

In one example, the method may include copying a storage
volume or root storage device of the virtual computing
instance to another virtual computing instance, such as the
recovery virtual computing instance described in connection
with FIG. 2A, when the virtual computing instance is non-
contactable. The method may include generating the operat-
ing information report from the recovery virtual computing
instance.

Referring now to FIG. 6, a flow diagram of a computer-
implemented method for identifying virtual computing
instance issues is illustrated in accordance with an example of
the present technology. The method may be performed under
the control of one or more computer systems configured with
executable instructions, and may include, for example, gen-
erating 610 an operating information report for a virtual com-
puting instance. The method may further include transmitting
620 the operating information report to a storage location for
processing using a temporary, signed URL. A report identi-
fication may be received 630 from the storage location in
response to transmitting the operating information report.
The report identification may be subsequently transmitted
640 to the storage location to retrieve a processed result of the
operating information report. The method may further
include receiving information relating to a cause of an issue
with the virtual computing instance and a solution to the issue
with the processed result.

FIG. 7 illustrates a computing device 710 on which mod-
ules of this technology may execute. A computing device 710
is illustrated on which a high level example of the technology
may be executed. The computing device 710 may include one
or more processors 712 that are in communication with
memory devices 720. The computing device 710 may include
a local communication interface 718 for the components in
the computing device. For example, the local communication
interface 718 may be a local data bus and/or any related
address or control busses as may be desired.

The memory device 720 may contain modules that are
executable by the processor(s) and data for the modules.
Located in the memory device 720 are modules executable by
the processor. For example, a parsing module 724, an analysis
module 726, and a flagging module 728, as well as other
modules, may be located in the memory device 720. A data
store 722 may also be located in the memory device 720 for
storing data related to the modules and other applications
along with an operating system that is executable by the
processor(s) 712.

The computing device 710 may further include or be in
communication with a client device 730, which may include
adisplay device. The client device 730 may be available foran
administrator to use in interfacing with the computing device

US 9,304,796 B1

21

710, such as to review operation of a virtual computing
instance, make improvements to machine learning models
and so forth.

Various applications may be stored in the memory device
720 and may be executable by the processor(s) 712. Compo-
nents or modules discussed in this description that may be
implemented in the form of software using high program-
ming level languages that are compiled, interpreted or
executed using a hybrid of the methods.

The computing device 710 may also have access to 1/O
(input/output) devices 714 that are usable by the computing
devices. An example of an 1/O device 714 is a display screen
that is available to display output from the computing devices.
Other known [/O device may be used with the computing
device as desired. Networking devices 716 and similar com-
munication devices may be included in the computing device
710. The networking devices 716 may be wired or wireless
networking devices 716 that connect to the internet, a LAN,
WAN, or other computing network.

The components or modules that are shown as being stored
in the memory device 720 may be executed by the processor
712. The term “executable” may mean a program file thatis in
aform that may be executed by a processor 712. For example,
a program in a higher level language may be compiled into
machine code in a format that may be loaded into a random
access portion of the memory device 720 and executed by the
processor 712, or source code may be loaded by another
executable program and interpreted to generate instructions
in a random access portion of the memory to be executed by
a processor 712. The executable program may be stored in
any portion or component of the memory device 720. For
example, the memory device 720 may be random access
memory (RAM), read only memory (ROM), flash memory, a
solid state drive, memory card, a hard drive, optical disk,
floppy disk, magnetic tape, or any other memory components.

The processor 712 may represent multiple processors and
the memory 720 may represent multiple memory units that
operate in parallel to the processing circuits. This may pro-
vide parallel processing channels for the processes and data in
the system. The local interface may be used as a network to
facilitate communication between any of the multiple proces-
sors and multiple memories. The local interface may use
additional systems designed for coordinating communication
such as load balancing, bulk data transfer, and similar sys-
tems.

While the flowcharts presented for this technology may
imply a specific order of execution, the order of execution
may differ from what is illustrated. For example, the order of
two more blocks may be rearranged relative to the order
shown. Further, two or more blocks shown in succession may
be executed in parallel or with partial parallelization. In some
configurations, one or more blocks shown in the flow chart
may be omitted or skipped. Any number of counters, state
variables, warning semaphores, or messages might be added
to the logical flow for purposes of enhanced utility, account-
ing, performance, measurement, troubleshooting or for simi-
lar reasons.

Some of the functional units described in this specification
have been labeled as modules, in order to more particularly
emphasize their implementation independence. For example,
amodule may be implemented as a hardware circuit compris-
ing custom VLSI circuits or gate arrays, off-the-shelf semi-
conductors such as logic chips, transistors, or other discrete
components. A module may also be implemented in program-
mable hardware devices such as field programmable gate
arrays, programmable array logic, programmable logic
devices or the like.

10

15

20

25

30

35

40

45

50

55

60

65

22

Modules may also be implemented in software for execu-
tion by various types of processors. An identified module of
executable code may, for instance, comprise one or more
blocks of computer instructions, which may be organized as
an object, procedure, or function. Nevertheless, the
executables of an identified module need not be physically
located together, but may comprise disparate instructions
stored in different locations which comprise the module and
achieve the stated purpose for the module when joined logi-
cally together.

Indeed, a module of executable code may be a single
instruction, or many instructions, and may even be distributed
over several different code segments, among different pro-
grams, and across several memory devices. Similarly, opera-
tional data may be identified and illustrated herein within
modules, and may be embodied in any suitable form and
organized within any suitable type of data structure. The
operational data may be collected as a single data set, or may
be distributed over different locations including over different
storage devices. The modules may be passive or active,
including agents operable to perform desired functions.

The technology described here may also be stored on a
computer readable storage medium that includes volatile and
non-volatile, removable and non-removable media imple-
mented with any technology for the storage of information
such as computer readable instructions, data structures, pro-
gram modules, or other data. Computer readable storage
media include, but is not limited to, RAM, ROM, EEPROM,
flash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic cas-
settes, magnetic tapes, magnetic disk storage or other mag-
netic storage devices, or any other computer storage medium
which may be used to store the desired information and
described technology. As used herein, the terms “medium”
and “media” may be interchangeable with no intended dis-
tinction of singular or plural application unless otherwise
explicitly stated. Thus, the terms “medium” and “media” may
each connote singular and plural application.

The devices described herein may also contain communi-
cation connections or networking apparatus and networking
connections that allow the devices to communicate with other
devices. Communication connections are an example of com-
munication media. Communication media typically embod-
ies computer readable instructions, data structures, program
modules and other data in a modulated data signal such as a
carrier wave or other transport mechanism and includes any
information delivery media. A “modulated data signal”
means a signal that has one or more of'its characteristics set or
changed in such a manner as to encode information in the
signal. By way of example, and not limitation, communica-
tion media includes wired media such as a wired network or
direct-wired connection, and wireless media such as acoustic,
radio frequency, infrared, and other wireless media. The term
computer readable media as used herein includes communi-
cation media.

Reference was made to the examples illustrated in the
drawings, and specific language was used herein to describe
the same. It will nevertheless be understood that no limitation
of'the scope of the technology is thereby intended. Alterations
and further modifications of the features illustrated herein,
and additional applications of the examples as illustrated
herein, which would occur to one skilled in the relevant art
and having possession of this disclosure, are to be considered
within the scope of the description.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in one or
more examples. In the preceding description, numerous spe-

US 9,304,796 B1

23

cific details were provided, such as examples of various con-
figurations to provide a thorough understanding of examples
of the described technology. One skilled in the relevant art
will recognize, however, that the technology may be practiced
without one or more of the specific details, or with other
methods, components, devices, etc. In other instances, well-
known structures or operations are not shown or described in
detail to avoid obscuring aspects of the technology.

Although the subject matter has been described in lan-
guage specific to structural features and/or operations, it is to
be understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features and
operations described above. Rather, the specific features and
acts described above are disclosed as example forms of
implementing the claims. Numerous modifications and alter-
native arrangements may be devised without departing from
the spirit and scope of the described technology.

The invention claimed is:

1. A computer-implemented method for identifying virtual
computing instance issues, comprising:

under control of one or more computer systems configured

with executable instructions:

receiving an operating information report from a virtual
computing instance at a virtual storage location, the
operating information report being created by a
request from a user of the virtual computing instance;

generating a report identification in response to receiv-
ing the operating information report at the storage
location and transmitting the report identification to
the virtual computing instance;

parsing the operating information report to obtain a
diagnostic result;

comparing the diagnostic result against an issues data
store containing known virtual computing instance
issues to determine whether there is an existing issue
for the virtual computing instance;

flagging the existing issue when identified; and

comparing a flagged existing issue against a solutions
data store to identify a cause of the flagged existing
issue and a solution to resolve the flagged existing
issue.

2. The computer-implemented method of claim 1, further
comprising notifying the user of the cause and the solution.

3. The computer-implemented method of claim 1, further
comprising receiving additional known virtual computing
instance issue data and storing the additional known virtual
computing instance issue data in the issues data store.

4. The computer-implemented method of claim 1, further
comprising receiving additional cause and solution data and
storing the additional cause and solution data in the solutions
data store.

5. A computer-implemented method, comprising:

under control of one or more computer systems configured

with executable instructions:

receiving an operation information report;

parsing the operating information report of a virtual
computing instance to obtain a diagnostic result, the
operating information report being created by request
from a user of the virtual computing instance;

generating a report identification in response to receiv-
ing the operating information report;

comparing the diagnostic result against a data store of
known computing instance issues to determine
whether there is an issue for the virtual computing
instance;

flagging the issue when identified; and

providing a flagged issue for resolution.

10

15

20

25

30

35

40

45

50

55

60

65

24

6. The computer-implemented method of claim 5, further
comprising comparing the flagged issue against a solutions
data store to identify a cause of the flagged issue and a solu-
tion to resolve the flagged issue.

7. The computer-implemented method of claim 5, further
comprising storing the operating information report as aread-
only report with access limited to a user and a diagnostic
technician.

8. The computer-implemented method of claim 5, further
comprising receiving the operating information report at a
storage location associated with the virtual computing
instance.

9. The computer-implemented method of claim 8, further
comprising providing the flagged issue for display to a diag-
nostic technician via an interface with the storage location.

10. The computer-implemented method of claim 5, further
comprising receiving the operating information report at a
storage location via an Application Programming Interface
(API) using a temporary, signed Uniform Resource Locator
(URL).

11. The computer-implemented method of claim 10, fur-
ther comprising generating a report identification in response
to receiving the operating information report at the storage
location and transmitting in the temporary, signed URL the
report identification to the virtual computing instance.

12. The computer-implemented method of claim 11, fur-
ther comprising receiving a subsequent request for report
information via the API from the virtual computing instance
and providing the flagged issue for display in response to the
subsequent request.

13. The computer-implemented method of claim 5, further
comprising expiring the operating information report after a
predetermined period of time.

14. The computer-implemented method of claim 5, further
comprising restricting access to portions of the operating
information report to ensure privacy of a user of the virtual
computing instance.

15. The computer-implemented method of claim 5, further
comprising receiving scripts from a plurality of users for
identifying the known computing instance issues and storing
the scripts in the data store of known computing instance
issues, the scripts including scripts for identifying the known
computing instance issues across a plurality of computing
platforms.

16. The computer-implemented method of claim 5, further
comprising copying a storage node of the virtual computing
instance to another virtual computing instance when the vir-
tual computing instance is non-contactable and generating
the operating information report from the another virtual
computing instance.

17. A system, comprising:

one or more computing nodes, each of which comprises at

least one processor and a memory, wherein the one or

more computing nodes are configured to collectively

implement:

an API to receive an operating information report when
called without a report identification and to retrieve
virtual computing instance diagnostic information
when called with the report identification;

an issues data store to store scripts for identifying known
virtual computing instance issues;

a parsing module to parse the operating information
report to obtain a diagnostic result;

an analysis module to use the issues data store and the
diagnostic result to determine whether there is an
existing issue for the virtual computing instance; and

US 9,304,796 B1

25

a flagging module to flag the existing issue when
present.
18. The system of claim 17, further comprising a notifica-
tion module to notify a user of the virtual computing instance
of at least one of a potential cause or a potential solution to the
existing issue.
19. The system of claim 17, further comprising a security
module to:
restrict submission of the operating information report to
submissions through the API via a temporary, signed
URL;

restrict access by a user to the operating information report
to access requests through the API including the report
identification; and

restrict access by a diagnostic technician to the operating

information report to a subset of information included in
the operating information report and to access via an
administration interface.

20. The system of claim 17, further comprising a monitor-
ing module to receive a plurality of the operating information
reports over time at a request of a user and to identify the

5

10

15

26

existing issue when changes to the virtual computing instance
occur which trigger at least one of the scripts.

21. A computer-implemented method, comprising:

under control of one or more computer systems configured

with executable instructions:

generating an operating information report for a virtual
computing instance;

transmitting the operating information report to a stor-
age location for processing using a temporary, signed
URL,;

receiving a report identification in a temporary, signed
Uniform Resource Locator (URL) from the storage
location in response to transmitting the operating
information report to the storage location; and

transmitting the report identification to the storage loca-
tion to retrieve a processed result of the operating
information report.

22. The computer-implemented method of claim 21, fur-
ther comprising receiving information relating to a cause of
an issue with the virtual computing instance and a solution to
the issue with the processed result.

#* #* #* #* #*

